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Lung cancer detection

e Lung cancer is the leading cause of

cancer-related death worldwide

e Screening may help reduce mortality rate

e Software can assist the radiologist



Motivation

Data challenge

e CNNs methodology of choice for image
analysis

e CNNsrequire a large amount of annotated
data to learn from

e Data-efficiency. the ability to learn in
complex domains without requiring large
quantities of data

e G-CNNsreduce the sample complexity for
lung nodule detection
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Convolutional Neural Networks
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What are CNNs?

Fully connected neural net not feasible for
Image analysis

A convolutional neural network 1s a neural
network with a convolutional layer

Convolution: apply a set of weights (filter or
kernel) at every position in the image to
extract features

Feature maps are then convolved with the
next set of filters



Convolutional Neural Networks
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Same dog, but translated.
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Why are CNNs efficient?

e Same set of welghts used at every position

e Therefore it doesn't matter where an object
In an image 1s located

e Thisis called translational equivariance

Te(f(x)) = f(Te(x)

e leadsto translational invariance

JX) = f(Te(x)



Group.Convolutions

e Translational weight-sharing and
equivariance make CNNs relatively
data-efficient

e Does not currently work for reflections and
rotations

e G-CNN: generalises equivariance to other
groups of transformations

Same dog, but rotated!
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Group.Convolutions

Implementation

® (reate augmented filter bank: transform each
filterbyeach g € G

- ® Apply regular convolution on augmented
— filter bank

® Produces |G| orientation channels per feature

® Equivariant to g € G: Tg(x) shuffles the

orientation channels depending on the group
structure
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Lung nodules: suspect lesions in the lung
that may be malignant

Two-stage pipeline:
o Candidate generation
o  False positive reduction

Large training set available from NLST

High-quality testset available from LIDC/IDRI
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models
1 == Baseline
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Experiment outline

Baseline CNN vs. G-CNN

Four training set sizes: 30, 300, 3.000 and
30.000 samples

Evaluation with FROC analysis score:
sensitivity vs. average false positives per
scan



G-CNN roughly as good as the reqular CNN
trained on 10x the amount of data!
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Additional observations

G-CNNs way more sensitive to malignant
nodules

G-CNNs converge faster, reducing training
time

Applicable to any 3D volume, including CT
and MRI

Easy to use: simply replace your convolution
with a g-convolution, and keep everything
else the same!
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Data scarcity 1s an 1ssue in the medical
domain

G-CNNs extend the weight-sharing
properties of CNNs

3D G-CNNs proved beneficial for false
positive reduction in lung nodule detection

G-convolutions are easy to use



We're hiring!
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Experiment outline

e DBaseline CNN vs. G-CNN

o  Competitive in LUNAI16 challenge
Same training, validation and test data

O  Same data augmentation scheme
o  Same architecture and hyperparameters
o  Same number of parameters

e Four training set sizes: 30, 300, 3.000 and
30.000 samples

e Evaluation with FROC analysis: sensitivity
vs. average false positives per scan
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Experiment outline

e Baseline CNN vs. G-CNN
o  Competitive in LUNAI16 challenge

o  Same training, validation and test data
O  Same data augmentation scheme

o  Same architecture and hyperparameters
o  Same number of parameters

e Four training set sizes: 30, 300, 3.000 and
30.000 samples

e Evaluation with FROC analysis: sensitivity
vs. average false positives per scan
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Groups in 3D

CT and MRI are 3D, rather than 2D. Groups in
3D are highly more complex.

Extension of the square to 3D is the cube
Voxels in CT and MRI are square prisms

In addition to rotations, we consider
reflections

This leads to four groups:
o  Cubic symmetry with and without reflections
o  Square prism symmetry with and without
reflections



