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The way | learned

data science

(~ Study the algorithms
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ano MACHINE LEARNING
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( Study the
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def sigmoid(x):
return 1 / (1 + np.exp(-x))

def sigmoid derivative(x):
return x * (1 - X)

# define layerﬂ
n_input = 2
n_hidden = 6
n_output 1

# welight initialization
hidden weights = np.random.uniform(size=(n input, n hidden))
output weights = np.random.uniform(size=(n_hidden, n output))

epochs = 10000

for in range(epochs):
# Forward pass.
hidden layer = X @ hidden weights
hidden activated = sigmoid(hidden layer)

output layer = hidden activated @ output weights
output activated = sigmoid(output layer)
y hat = output activated

# Backpropagation / error calculation
error output = y - y hat
delta output error output * sigmoid derivative(output activated)

error hidden = delta output @ output weights.T
delta hidden = error hidden * sigmoid derivative(hidden activated)

# Update weights.
output weights += hidden activated.T @ delta output
hidden weights += X.T @ delta hidden
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datasets

@ GettingStarted Prediction Competition

Titanic - Machine Learning from Disaster . . _
Start here! Predict survival on the Titanic and get familiar with ML basics

. Kaggle - 14,027 teams - Ongoing

@ GettingStarted Prediction Competition

Spaceshlp Titanic

:" Preal‘ewmch passengers are transported to an alternate dimension

B,

= S —r— : - l.‘i“-.. 2 ?7"7’-“!%
. Kaggle - 2,217 teams - Ongoing =,



Machine Learning

*hkkhkk 49 170,525ratings * 43,612 reviews

The way many people learn
@ Andrew Ng [ TOP INSTRUCTOR

SKILLS YOU WILL GAIN

[~ Study the o N | N
Logistic Regression Artificial Neural Network Machine Learning (ML) Algorithms Machine Learning

2" Apply the
o Practice on toy datasets Deep Learning Specialization

Become a Machine Learning expert. Master the fundamentals of deep learning and break into Al. Recently
updated with cutting-edge techniques!
% %k % % 4.9 123,393 ratings

@ Andrew Ng +2 more instructors [ TOP INSTRUCTORS |

SKILLS YOU WILL GAIN

-
(, () Artificial Neural Network Convolutional Neural Network Tensorflow Recurrent Neural Network

Neural Network Architecture

Transformers Deep Learning Backpropagation Python Programming

DIRIVIZN
Mathematical Optimization hyperparameter tuning Inductive Transfer




If machine learning is 20% modelling
and 80% data prep...
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If machine learning is 20% modelling
and 80% data prep...

.... Why is data prep not taught?
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. education for evervone
Data scientists treat datasets as
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GO
DRIVIZN




OUrsera

. education for evervone
Data scientists treat datasets as

2 What they learn in courses

® It’s what most online competitions focus on

GO
DRIVIZN




OUrsera

. education for evervone
Data scientists treat datasets as

2 What they learn in courses

® It’s what most online competitions focus on

(~ Because that’s what they do in academia
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Data scientists treat datasets as

2 What they learn in courses

® It’s what most online competitions focus on

(~ Because that’s what they do in academia

2“It’s what most tools are being built for
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education for evervone
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But datasets should not be static
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: Data Science Bowl 2017
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: Data Science Bowl 2017
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“For this solution, engineering
the train set was an essential
— if not most essential —

part. o

- Julian de Wit, 2" place

\




Example: Data Science Bowl 2017
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Data-Centric Al
competition




Data-centric Al is the discipline of
systematically engineering the data used
to build an Al system.
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@ DeepLearning.Al | #fi LANDING Al

Data-Centric Al Competition

Join the data-centric Al movement!

Model is (ResNet50) Click here to enter the contest!
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@ DeepLearning.Al | #fi LANDING Al

Data-Centric Al Competition

Join the data-centric Al movement!

* Modelis (ResNet50) Click here to enter the contest!

from 1to 10
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@ DeepLearning.Al | #fi LANDING Al

Data-Centric Al Competition

Join the data-centric Al movement!

* Modelis (ResNet50) Click here to enter the contest!

from 1 to 10

in a train/validation set split
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Model is

class
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(ResNet50)
from 1to 10
in a train/validation set split

with to-be-expected examples of each

@ DeepLearning.Al | #fi LANDING Al

Data-Centric Al Competition

Join the data-centric Al movement!

Click here to enter the contest!




@ DeepLearning.Al | #fi LANDING Al

Data-Centric Al Competition

Join the data-centric Al movement!

Model is (ResNet50) Click here to enter the contest!

. from 1to 10
. in a train/validation set split
. with to-be-expected examples of each
class
TASK
to a maximum of that
maximizes the model accuracy on a test set
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OUR SOLUTION

Use low-tech tools to get started
together
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Insert Format Data Tools Add-ons Help
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E roman-numerals ¥ & &
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= img_full = annotator1 = annotator2 = marysia:) = agreement Y override =
E— 4 X X 0 3
_ 1
. Get predictions from TH , o . s
Focus on between the
model and the ground truth w 5 X X 0 9
Individually annotate and create \_/_’..
annotator - 3 X 3 0 7
X X 2 0 x
GO 6 ’ / 0 7
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LESSON ONE
The labeling IS the learning
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Some data points simply

needed to be
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Some data points simply

needed to be

‘@’ between

annotators was often about

the same classes
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Some data points simply

needed to be

‘@’ between

annotators was often about
the same classes

of writing
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Sample from training set

Some data points simply
needed to be

X between
annotators was often about

the same classes

@ Different of writing
Difference in N
set?!
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OUR SOLUTION

Use embeddings to get a sense
of typicality and style
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ResNet50 Model Architecture
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ResNet50 Model Architecture
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The standard Train/Validation split has style differences Img Selection

1 subset

® | ‘ . tegt
. z train

& 3 . 4 .E val
: VA

1. Pass all the data through the

network to obtain the

2. Perform

3. using interactive

2 4 6 8 10 12 14 16

| | b ra I"y umap_dim1
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The standard Train/Validation split has style differences
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Label book / Train / Validation / style differences.
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LESSON TWO
Don’t be afraid to rebalance the
train/test split
GO B
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OUR SOLUTION

Use data augmentation to
enrich your dataset
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E|§ E‘g = Compress Pictures
=M . == |

(>l Chanae Picture v

AL YA DR VA SR A T

A 1 BVAVER VAN

®  Transform existing data
points to create %Y et

versions

% Artistic Effects Options...
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save

next

Vviii=>iii

(412, 418)
® Transform existing data
points to create
versions .y -
e Create 5\\/ Lll
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Viii->iii | Ll

(412, 418)

1. Transform existing data points to

oV

vilj

Vil Vil

create versions

2. Create
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LESSON THREE
Make it easy to quickly iterate over
datasets
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@peeplLearningAl |  3ffk LANDING Al

Data-centric Al Competition

WINNER ANNOUNCEMENT

MOST INNOVATIVE

GoDataDriven
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Roel Marysia Rens
Bertens Winkels Dimmendaal
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@p0Deeplearning Al | i LANDING Al

Data-centric Al Competition

Winner Announcement

BEST PERFORMANCE

innotescus

MOST INNOVATIVE

: )
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J
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YR

Dwaka: Shashank Chns
Deshpande Anderson Walsh

Synaptic-AnN

.‘i‘
f.-;:’ = \0\,,‘
Asfandyar Nidhish

Azhar Shah
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DCAI competition
What did others do?
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Best performance

data cleaning

data generation

1
2
3. data generation
4,

Distribution and style

5. Filtering by
GO

DRIVIZN

AU G
_'f&jg«?i’ { 1
g’f& (( 1w m o

Figure 2: Style replication applied on class | of the label book — images bordered
in blue are the original label book images.

J J / / /
bottom-left bottom-right centre top-left top-right

Read about it at
www.deeplearning.ai/data-centric-ai-competition-synaptic-ann/
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Best performance e y e
seteseeee Saseun inuens . Ppe
Data
Rebalancing dataset Imbalance between lower and uppercase numerals
(Innotescus chart)
Rebalancing using
10 ’ * [} -
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Rebalancing with hard H e = 1 ) \ ) \
g 4 PR S ‘% . t
examples : = Tl e i % P J (
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Read about it at
DRIVIEN https://www.deeplearning.ai/data-centric-ai-competition-innotescus/




Best performance

1. Separate

2. Camera distortion onto

3. into canvas

4. Data quality

cleaning up
GO
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Split Add

Noise-1
I —lz waNn
/ Clean-1 |

W W -‘Y
= \

.
" k.
\

Original-1

Original-2

Clean-2

Read about it at
https://www.deeplearning.ai/data-centric-ai-competition-divakar-roy/
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Foundation models & transfer learning
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Improving the code vs. the data

“ Foundation models & transfer learning

L Improve performance Baseline 76.2% 75.68% 85.05%
Model-centric +0% +0.04% +0_.00%

Data-centric +16.9% +3.06% +0.4%

GO
Credit:
lj lq I\/ E N Andrew Ng, MLOps: From Model-centric to Data-centric Al




* Foundation models & transfer learning

(7S Improve performance
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Accuracy (mAP)

0.75

0.65

0.55

0.45

0.35

250

m=em  Clean Data
m=mm  Noisy Data

500 750 1000 1250 1500

Number of training examples

Credit: Landing.ai



“ Foundation models & transfer learning

(7S Improve performance

problems can also problems
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Xebia-Guest
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Nodule type classification

* Foundation models & transfer learning ' { 1 ‘
(7S Improve performance &
" Enables better collaboration

Solid Part-solid Ground-glass

nodule nodule nodule
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* Foundation models & transfer learning

(7S Improve performance

" Enables better collaboration
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Andrew Ng @ @AndrewYNg - Sep 22

| would love your thoughts on this: Data-centric Al is still an emerging field,
but what do you think are the key pillars of data-centric Al? E.g., if you were
reading a textbook on this nascent field, what are some major topics you’d
like the book to include?

359 Ty 226 ) 1.6K

" Rens Dimmendaal @R_Dimm - Sep 28
z
“' @ @ the practical benefit that iterating on the data makes it easier to collaborate
and discuss with end-users as compared to being model centric data
scientist stuck your ivory tower...or basement :-)

- M ey

Foundation models & transfer learning
/y‘#ﬁ Vincent D. Warmerdam

voan. @fishnets88

(7S Improve performance

Replying to

" Enables better collaboration

solved thr medical Pco\o\,o_m by
oveC o bunch of Sf{‘hv\\js

\

7 Yooya
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“ Foundation models & transfer learning

(7S Improve performance

" Enables better collaboration
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Data centric scientist

\ solved the meo\ical P(obh,m ‘0)/
J o oved » umch o selhvgs
iy \oo‘Y j ove ¢ j

Let's ask why these image were
labeled as “good”!

Can they gather more of those h.
examples? Can we help? @ / uh 0

N A=l

Source: Vincent Warmerdam

& Rens’s bad powerpoint skills
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“The focus has to shift from

to . Having 50
thoughtfully engineered o
examples can be sufficient to
explain to the neural network

what you want it to learn.” ,

- Andrew Ng

\
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TaskK: Classify the following online comment as “toxic” or “not toxic.”
Comment: “1. People still eat at Pizza Hut? Gross. 2. It is shameful how this countryl...]"

® Toxic ™ Not toxic

THIS 15 WHO /5 TOXIC: THEY'RE HEAPING THIS SEEMS
NON-CONSEQUENTIAL. THIS PERSON? SHAME ON THE WHOLE TOXIC IN ONLY
NON-TOXIC. > COUNTRY AT ONCE. CERTAIN CONTEXTS...

. data labels

EATING AT PIZZA UT MAY BE GROSS TO TOXICITY IS DEFINED
SOME, BUT WHAT'S REALLY GROSS IS PIFFERENTLY FOR DIFFERENT
THE GROSS GENERALIZATION. TOXIC. SOCIAL MEDIA COMPANIES!

z TELL ME WHERE IT WAS 1 GOT FOOD POISONING
N% Jf; '2,;?,‘25;"3“&;':? POSTED AND T'LL TELL FROM THE CORNER DELI.
: YOU IF IT'S TOXIC. NOW THAT WAS TOXIC!

GO

D R|VEN Credit: Michael Bernstein




Train set

data labels

and
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Train set

data labels

and

Real world example

4

GO

DRIVIZN




from transformers import pipeline

unmasker = pipeline("fill-mask", model="bert-base-uncased")
data labels result = unmasker("This man works as a [MASK].")
print([x["token_str"] for r in result])

and

data result = unmasker("This woman works as a [MASK].")

print([x["token_str"] for r in result])

1 ' [ 1 [ 1 1 . 1 1 . ' s
['lawyer', 'carpenter', 'doctor', 'waiter', 'mechanic'] O

['nurse', 'waitress', 'teacher', 'maid', 'prostitute']
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REVISE: A tool for measuring and
mitigating bias in visual datasets

Angelina Wang, Arvind Narayanan and Olga Russakovsky
ECCV 2020
https://github.com/princetonvisualai/revise-tool

£=rS>r<\\/'4 2
"1
ECCV'14]

Images: COCO dataset [Lin et a
Annotations: (1) inferred gender [Zhao et al. EMNLP'171.
data labels ) inferred g l & 7]

A .
2) predicted scenes with the Places

network [Zhou et al. TPAMI 'I

and

f N
wat
data ndustrial an
ing rt 15 t
) f { elds, pa
| nan-n e e \
) ] 1 ( 3
transp '
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| wiaing
f r 15
| ) tu
male
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{ ) 10 )
f fhr ) t {
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How do we get to
Data-Centric Al?
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take an interest
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dc

NEURIPS DATA-CENTRIC

Al WORKSHOP
1. take an interest
2. by many as best practice @DeeplearningAl | # LANDING Al
Data-Centric Al Competition
The Future of
Data-Centric Al
GO August 2, 2022 | Workshop




Data-centric Al is the discipline of
systematically engineering the data used
to build an Al system.
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PyHard: a novel tool for generating hardness
embeddings to support data-centric analysis

AutoAugment:
Learning Augmentation Strategies from Data

take an interest CircleNLU: A Tool for building Data-Driven Natural

by many as best practice Language Understanding System

tools are developed

REVISE: A tool for measuring and
mitigating bias in visual datasets

YMIR: A Rapid Data-centric Development Platform
for Vision Applications

GO
Augment & Valuate : A Data Enhancement Pipeline
DRIVIEN for Data-Centric AI




3 LANDING Al |
Eg

by many as best practice snorkel
B
tools are developed s 10loClean

take an interest

(L Cleanlab

o ” Albumentations
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“But | /ike building models!”
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Model-centric Al™ ~ Data-centric Al

DRIVIZN



Thank youl!
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