GO TI DATA DRIVEN

Models-schmodels: why you should care about Data-Centric Al

Marysia Winkels, PyData London 2022

The way I learned

data science

Study the algorithms

PATTERN RECOGNITION AND MACHINE LEARNING CHRISTOPHER M. BISHOP

The way I learned

data science

```
Study the algorithmsImplement the algorithms
```



```
def sigmoid(x):
    return 1 / (1 + np.exp(-x))
def sigmoid_derivative(x):
    return x * (1 - x)
# define layers
n_input = 2
n_hidden = 6
```

weight initialization

n output = 1

hidden_weights = np.random.uniform(size=(n_input, n_hidden))
output_weights = np.random.uniform(size=(n_hidden, n_output))

```
epochs = 10000
for _ in range(epochs):
    # Forward pass.
    hidden_layer = X @ hidden_weights
    hidden_activated = sigmoid(hidden_layer)
```

```
output_layer = hidden_activated @ output_weights
output_activated = sigmoid(output_layer)
y_hat = output_activated
```

Backpropagation / error calculation

```
error_output = y - y_hat
delta_output = error_output * sigmoid_derivative(output_activated)
```

```
error_hidden = delta_output @ output_weights.T
delta_hidden = error_hidden * sigmoid_derivative(hidden_activated)
```

Update weights.

```
output_weights += hidden_activated.T @ delta_output
hidden_weights += X.T @ delta_hidden
```

The way I learned

data science

Study the algorithmsImplement the algorithms

Practice on toy datasets

kaggle

GettingStarted Prediction Competition

Titanic - Machine Learning from Disaster

Start here! Predict survival on the Titanic and get familiar with ML basics

Kaggle · 14,027 teams · Ongoing

GettingStarted Prediction Competition

Spaceship Titanic

Predict which passengers are transported to an alternate dimension

The way *many people* learn data science

Study the algorithmsApply the algorithms

Practice on toy datasets

GO TI DATA DRIVEN

Machine Learning

★★★★★ **4.9** 170,525 ratings • 43,612 reviews

SKILLS YOU WILL GAIN

Logistic Regression

Artificial Neural Network

Machine Learning (ML) Algorithms

Machine Learning

Deep Learning Specialization

Become a Machine Learning expert. Master the fundamentals of deep learning and break into AI. Recently updated with cutting-edge techniques!

***** 4.9 123,393 ratings

Andrew Ng +2 more instructors TOP INSTRUCTORS

SKILLS YOU WILL GAIN

Artificial Neural Network		Convolutional Neural Network		Tensorflow Recur		rent Neural Network	
Transformers	Deep Le	arning	Backpropagation	Python Programming		Neural Network Architecture	
Mathematical Opti	mization	hype	rparameter tuning	Inductive Transfer			

If machine learning is 20% modelling and 80% data prep...

If machine learning is 20% modelling and 80% data prep...

.... why is *data prep* not taught?

😫 What they learn in courses

COURSERC education for everyone

👰 What they learn in courses

🐨 It's what most online competitions focus on

courserd education for everyone

kaggle

GO TI DATA DRIVEN

😫 What they learn in courses

It's what most online competitions focus on

🕅 Because that's what they do in academia

courserd education for everyone

kaggle

IM GENET

- 👰 What they learn in courses
- It's what most online competitions focus on
- Because that's what they do in academia
- ^{*}It's what most tools are being built for

courserd education for everyone

kaggle

IM GENET

But datasets should not be static

Example: Data Science Bowl 2017

Example: Data Science Bowl 2017

GO TI DATA DRIVEN

"For this solution, engineering the train set was an essential – if not the most essential – part."

- Julian de Wit, 2nd place

Example: Data Science Bowl 2017

Data-centric AI is the discipline of systematically engineering the data used to build an **AI** system.

• Model is fixed (ResNet50)

DeepLearning.Al | 🏦 LANDING AI

Data-Centric AI Competition

Join the data-centric AI movement!

- Model is fixed (ResNet50)
- Roman numerals from 1 to 10

DeepLearning.Al | 🎊 LANDING AI

Data-Centric AI Competition

Join the data-centric AI movement!

- Model is fixed (ResNet50)
- Roman numerals from 1 to 10
- **3K images in a train/validation set split**

GO TI DATA DRIVEN

DeepLearning.Al | 🏦 LANDING AL

Data-Centric AI Competition

Join the data-centric AI movement!

- Model is fixed (ResNet50)
- Roman numerals from 1 to 10
- **3K images** in a train/validation set split
- Labelbook with to-be-expected examples of each class

DeepLearning.Al | 🏦 LANDING AI

Data-Centric AI Competition

Join the data-centric Al movement!

- Model is fixed (ResNet50)
- Roman numerals from 1 to 10
- **3K images** in a train/validation set split
- Labelbook with to-be-expected examples of each class

TASK

Enhance the dataset to a maximum of 10K images that maximizes the model accuracy on a hidden test set

🕲 DeepLearning.Al | 🏦 LANDING AI

Data-Centric AI Competition

Join the data-centric Al movement!

OUR SOLUTION

Use low-tech tools to get started together

	File Edit View Insert Format Data Tools Add-ons Help Last edit was on July 10								
		• •	100% 🔻 \$	% .000_ 12	23 - Default (A	ri 🔻 10	- B <i>I</i> \$	<u>A</u>	141
C2	Ŧ	fx	i		-		-		
	A		В	С	D	E	F	G	
1	image	÷	fname =	label =	subset ¯	img_url =	sim1 -	sim2 -	
2			ac604594-ce5d-	i	train	https://workshee	2.971025	-0.068182476	
3			ac19def6-ce5d-	1i	train	https://workshee	3.1976612	-0.041533813	
4		· · · ·	ac4fe7b2-ce5d-7	1i	train	https://workshee	3.134209	-0.02839761	

GO TI DATA DRIVEN

Improve label quality

1. Get predictions from baseline model

Improve label quality

- 1. Get predictions from baseline model
- 2. Focus on discrepancies between the model and the ground truth

 \triangle roman-numerals 삸 Ħ File Edit View Insert Format Data Tools Extensions Help Las 🖶 🟲 | 100% 🗕 \$ % .0_ .00_ 123 - Default (Ari... - 10 \mathbf{n} fx 14 • А В С **4 >** Е F 1 curation index label pred img 2 492 i х vi 3 538 i 3 iii 4 639 i 3 ix Æ 5 541 i vii Х 6 5 437 i х 7 N 553 i х х 8

GO TI DATA DRIVEN

Improve label quality

- 1. Get predictions from baseline model
- Focus on discrepancies between the model and the ground truth
- 3. Individually annotate and create annotator consensus

U I	▶ ┌	G	Н		► L
img_full 👳	annotator 1 \Xi	annotator 2 \Xi	marysia :) 🗦	agreement T	override =
Th	4	x	x	0	3
III	2		¥	0	3
ix			~		
M	5	X	X	0	9
五	3	X	3	0	7
M	x	X	2	0	X
X-	6	/ /	x	0	6
		img_full $=$ annotator 1 $=$ M 4 M 2 M 5 M 3 M 3 M 3 M 3 M 3 M 3 M 6	$img_full = annotator 1 = annotator 2 =$ $M = 4$ x $TTT = 2$ x x $TTT = 2$ x x $TTT = 2$ x	ing_full $=$ annotator 1 $=$ annotator 2 $=$ marysia :) $=$ M 4 x x M 2 x x M 3 x 3 M 3 x 3 M 6 7 7 M 6 7 7	ing_full = annotator 1 = annotator 2 = marysia:) = agreement \mathbf{T} \mathbf{T} 4 x x 0 \mathbf{T} 2 x x 0 \mathbf{T} 2 x x 0 \mathbf{T} 3 x 0 \mathbf{T} 3 x 0 \mathbf{T} 6 7 7 0 \mathbf{T} 6 x x 0

LESSON ONE The labeling IS the learning

X Some data points simply needed to be removed

 Some data points simply needed to be removed
 Lack of consensus between annotators was often about the same classes

 $\mathbf{\times}$ Some data points simply needed to be removed Lack of consensus between annotators was often about the same classes

- Some data points simply needed to be removed
 Lack of consensus between
 - annotators was often about the same classes
 - Different styles of writing

!?

GO

DATA

DRIVEN

set?!

Difference in train/validation..??

Sample from training set

Sample from validation set

OUR SOLUTION

Use embeddings to get a sense of typicality and style

Pass all the data through the network to obtain the embeddings

ResNet50 Model Architecture

Pass all the data through the network to obtain the embeddings

- Pass all the data through the network to obtain the embeddings
- 2. Perform UMAP

- Pass all the data through the network to obtain the embeddings
- 2. Perform UMAP
- 3. Visualize using interactive library

GO TI DATA DRIVEN

(...

٧٧

Label book / Train / Validation / style differences.

GO TI DATA DRIVEN

LESSON TWO Don't be afraid to rebalance the train/test split

OUR SOLUTION

Use data augmentation to enrich your dataset

Augment your dataset

Transform existing data points to create augmented versions

V\l

Augment your dataset

- Transform existing data
 points to create augmented
 versions
 - Create counterfactuals

Augment your dataset

- Transform existing data points to create augmented versions
- 2. Create counterfactuals

LESSON THREE Make it easy to quickly iterate over datasets

DeepLearning.Al
 M LANDING AI

Data-centric AI Competition

WINNER ANNOUNCEMENT

MOST INNOVATIVE

GoDataDriven

Roel Bertens

Marysia Winkels

Rens Dimmendaal

DeepLearning.Al Mc LANDING AI **Data-centric AI Competition**

Winner Announcement

BEST PERFORMANCE

Divakar Roy

Shashank Deshpande

Chris Anderson

Nidhish

Innotescus

Asfandyar Azhar

Rob Walsh

MOST INNOVATIVE

Mohammad Motamedi

Johnson Kuan

Score: Bertens

Marysia

Rens Dimmendaa

DCAl competition What did others do?

Synaptic-AnN

Best performance

- 1. Manual data cleaning
- 2. Manual data generation
- 3. Auto data generation
- Distribution and style replication
- 5. Filtering by vote

GO TI DATA DRIVEN

Figure 2: Style replication applied on class I of the label book — images bordered in blue are the original label book images.

Read about it at www.deeplearning.ai/data-centric-ai-competition-synaptic-ann/

Innotescus

Best performance

- 1. Data cleaning
- 2. Rebalancing train & test dataset
- Rebalancing subclasses using embeddings
- Rebalancing edge cases with hard examples

Imbalance between lower and uppercase numerals (Innotescus chart)

Read about it at https://www.deeplearning.ai/data-centric-ai-competition-innotescus/

Divakar Roy

Best performance

- 1. Separate noise
- Camera distortion onto skewed grid
- 3. Overlay into canvas
- 4. Data quality assessment and

cleaning up

GO TI DATA DRIVEN

Read about it at

https://www.deeplearning.ai/data-centric-ai-competition-divakar-roy/

The why of Data-Centric Al

Foundation models & transfer learning

The competitive advantage of data scientists lies in everything that surrounds the model.

GO TI DATA DRIVEN

BERTBASE

BERTLARGE

Foundation models & transfer learning
 Improve performance

Improving the code vs. the data

	Steel defect detection	Solar panel	Surface inspection
Baseline	76.2%	75.68%	85.05%
Model-centric	+0%	+0.04%	+0.00%
	(76.2%)	(75.72%)	(85.05%)
Data-centric	+16.9%	+3.06%	+0.4%
	(93.1%)	(78.74%)	(85.45%)

GO TI DATA DRIVEN

Andrew Ng, MLOps: From Model-centric to Data-centric AI

Credit:

Foundation models & transfer learning
Improve performance

Credit: Landing.ai

Foundation models & transfer learning
Improve performance

Big data problems can also small data problems

GO TI DATA DRIVEN

Foundation models & transfer learning
Improve performance

Enables better collaboration

Solid

nodule

Nodule type classification

Part-solid nodule

Ground-glass nodule

Foundation models & transfer learning
Improve performance

Senables better collaboration

Foundation models & transfer learning
Improve performance

Enables better collaboration

Andrew Ng 🕗 @AndrewYNg · Sep 22

I would love your thoughts on this: Data-centric AI is still an emerging field, but what do you think are the key pillars of data-centric AI? E.g., if you were reading a textbook on this nascent field, what are some major topics you'd like the book to include?

S 359 1,226 ♥ 1.6K

 \heartsuit

Rens Dimmendaal @R_Dimm · Sep 28 ···· the practical benefit that iterating on the data makes it easier to collaborate and discuss with end-users as compared to being model centric data scientist stuck your ivory tower...or basement :-)

 $\bigcirc 1$

Vincent D. Warmerdam @fishnets88

17

Replying to @R_Dimm and @AndrewYNg

i solved the medical problem by looping over a bunch of settings whoh. HOSPITAL ↑ - distance ivory tower

Foundation models & transfer learning
Improve performance

Enables better collaboration

GO TI DATA DRIVEN Data centric scientist

i solved the medical problem by looping over a bunch of settings (11) Let's ask why these image were labeled as "good"! Can they gather more of those whoh. \$ examples? Can we help? HOSPITAL ivory tower

Source: Vincent Warmerdam & Rens's bad powerpoint skills

GO TI DATA DRIVEN

"The focus has to shift from big data to good data. Having 50 thoughtfully engineered examples can be sufficient to explain to the neural network what you want it to learn."

- Andrew Ng

• Consistent data labels

• Consistent data labels

Task: Classify the following online comment as "toxic" or "not toxic." Comment: "1. People still eat at Pizza Hut? Gross. 2. It is shameful how this country[...]"

Toxic Not toxic

- Consistent data labels
- Complete and representative data

Train set

- Consistent data labels
- Complete and representative data

Train set

Real world example

- Consistent data labels
- Complete and representative data
- Unbiased data

from transformers import pipeline

```
unmasker = pipeline("fill-mask", model="bert-base-uncased")
result = unmasker("This man works as a [MASK].")
print([r["token_str"] for r in result])
```

```
result = unmasker("This woman works as a [MASK].")
print([r["token_str"] for r in result])
```

['lawyer', 'carpenter', 'doctor', 'waiter', 'mechanic']
['nurse', 'waitress', 'teacher', 'maid', 'prostitute']

- Consistent data labels
- Complete and representative data
- Unbiased data

GO TI DATA DRIVEN

REVISE: A tool for measuring and mitigating bias in visual datasets

Angelina Wang, Arvind Narayanan and Olga Russakovsky ECCV 2020 https://github.com/princetonvisualai/revise-tool

Images: COCO dataset [Lin et al. ECCV'14] Annotations: (1) inferred gender [Zhao et al. EMNLP'17], (2) predicted scenes with the Places network [Zhou et al. TPAMI'7]

How do we get to Data-Centric AI?

Development of Data-Centric Al

1. Individuals take an interest

Development of Data-Centric Al

- 1. Individuals take an interest
- 2. Adopted by many as best practice

NEURIPS DATA-CENTRIC AI WORKSHOP

🕲 DeepLearning.Al | 🏦 LANDING AI

Data-Centric AI Competition

Join the data-centric AI movement!

The Future of **Data-Centric Al**

August 2, 2022 | Workshop August 3-4, 2022 | Sessions

Data-centric AI is the discipline of systematically engineering the data used to build an **AI** system.

Development of Data-Centric Al

1. Individuals take an interest

- 2. Adopted by many as best practice
- 3. Systematic tools are developed

GO T DATA DRIVEN **PyHard:** a novel tool for generating hardness embeddings to support data-centric analysis

AutoAugment: Learning Augmentation Strategies from Data

> CircleNLU: A Tool for building Data-Driven Natural Language Understanding System

REVISE: A tool for measuring and mitigating bias in visual datasets

YMIR: A Rapid Data-centric Development Platform for Vision Applications

Augment & Valuate : A Data Enhancement Pipeline for Data-Centric AI

Development of Data-Centric AI

- 1. Individuals take an interest
- 2. Adopted by many as best practice
- 3. Systematic tools are developed

HoloClean

🕒 Cleanlab

"But I like building models!"

Thank you!

